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Abstract. Semenov’s classical model of thermal explosion in a combustible gas mixture is modified to include
radiative (rather than conductive) heat-loss effects and gas-density changes. A geometrical asymptotic technique
(the method of integral manifolds - MIM) is exploited to perform a qualitative analysis of the governing equations.
The strength of this method lies in the compact, clear geometrical/analytical rendition and classification of all
possible dynamical scenarios, in terms of the physico-chemical parameters of the system. It is found that there
are two main dynamical regimes of the system: cooling regimes and fast explosive regimes. Peculiarities of
these dynamical regimes are investigated and their dependence on physical system parameters is analyzed. A
criterion for the occurrence of thermal explosion is disclosed. An estimate for the maximum mixture temperature
is also derived analytically. It is found that, under certain operating conditions, the dynamics are such that the
initial explosive stage of the process essentially behaves adiabatically before succumbing to the dominance of the
radiative heat loss that brings the system down to the ambient temperature.
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1. Introduction

It is now a rather well established fact that radiative heat losses play a more significant role
in a variety of combustion situations than was previously supposed. For example, Viskanta
and Menguc [1] have extensively reviewed the effects of radiative heat transfer in combustion
systems. T’ien[2] explored such effects in condensed fuel diffusion flames in the stagnation
region of a forced flow, where the heat loss is from the fuel surface. This work was the first
to point out that there can exist an extinction limit associated with radiation, in addition to
the familiar limit stemming from too small a residence time. Sohrab et al. [3] discussed gas
phase radiation effects in the counter-flow diffusion flame problem. Chao et al. [4] performed
a similar analysis for the burning droplet diffusion flame problem. In both these analyses
the radiation terms were replaced by equivalent Arrhenius-type expressions. Chao et al. [4]
identified the possibility of dual turning points. In the context of premixed combustion both
experimental [5, 6] and theoretical/computational [7, 8] work has highlighted the important
role of radiative heat transfer. Micro-gravity experiments by Ronney [6] have enabled these
effects to be more thoroughly understood, by removing masking buoyancy effects.

One, as yet unexplored, problem in the field of the mathematical theory of combustion con-
cerns the way in which thermal radiation, emitted by a burning gas, influences the dynamics
of the thermal explosion process. It is this problem that we address in this paper.
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In general terms, two processes drive the behavior of the system: heat loss due to thermal
radiation of the burned gas and heat release associated with an exothermic oxidation reaction.
It is the competition between these processes that determines the behavior of the exploding
system. We point out that, when using the term ‘thermal explosion’, we refer exclusively to the
initial stages of the behavior of the combustible medium as its temperature begins to rise (by
about 100–200K) and the aforementioned competing mechanisms are called into play. It is
what takes place at this initial evolutionary period that sets the stage for the ultimate behavior
of the system. Thus, we only focus on this particular episode in the combustible mixture’s
lifetime, rather than on its entire life history. The subsequent evolution is of no concern to us
in this work, and, indeed, cannot be described by the equations we use here.

A mathematical model is developed as a system of two highly nonlinear ordinary dif-
ferential equations: an energy equation and a concentration equation for the reacting gas
mixture. It can be shown that the gas-phase temperature changes very quickly due to the
highly exothermic reaction. On the other hand, the concentration of the combustible mixture
changes relatively slowly. Therefore, the system can be considered as multiple-scale. This fact
permits us to exploit a geometrical asymptotic method (MIM - integral manifold method, [9])
for qualitative analysis of the model. It thereby enables a complete classification of dynamical
behavior to be given, as well as permitting critical conditions for the main dynamical regime
transitions to be deduced analytically. After classifying the dynamical regimes according to
different parametric regions a criterion is established for thermal explosion. In addition, an
estimate for the maximum temperature attained during explosive behavior is derived. Finally,
calculated results for three different fuels highlight the role of radiative heat transfer.

2. Model description

A novel modification of Semenov’s classical model of thermal explosion in a combustible
gas mixture is considered. The main physical assumptions of the model are as follows. We
consider self-ignition of a gaseous mixture in an unconfined region. As is usual [10, Chapter 2]
for the thermal explosion process we are considering here, we neglect the pressure change in
the reacting mixture and its influence on the combustion process. We assume that heat transfer
to the ambient is due to thermal radiation only (there are no heat losses of any other kind). The
combustible component of the mixture is supposed to be deficient, whereas the concentration
of the oxidizer is taken to be approximately constant. The combustion reaction is modeled as
a first order, one-step highly exothermic chemical reaction.

Under these assumptions the system of governing equations reduces to an energy equation
for the reacting gas (1) and a concentration equation for the reacting fuel (2):

cpgρg
dTg
dt

= CfQf
Tg0

Tg
Zµf exp

(
− E

RTg

)
− qrad, (1)

dCf
dt

= −Cf Tg0

Tg
Z exp

(
− E

RTg

)
, (2)

where use has been made of the equation of state

ρgTg = ρg0Tg0 = const (3)

In these equations C is the concentration (kmol/m3), ρ is the density (kg/m3), c is the specific
heat capacity (J/kg/K), q is volumetric heat loss (W/m3 s), µ is molar mass (kg/kmol), T is
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temperature (K), Q is the specific combustion energy (per unit mass) (J/kg), Z is a constant
pre-exponential rate factor (s−1), R is the universal gas constant and E is the activation energy
(J/kmol). The notation for the subscripts is: g - gas mixture; f - combustible gas component
of the mixture (fuel); p - under constant pressure; 0 - the initial state; rad - radiation.

The gas is taken to be optically thin. This situation is prevalent in many industrial applica-
tions, where the thermal radiation transfer is mainly dictated by the flammable mixture and, in
turn, by its temperature. It is convenient to adopt an approximate expression for the radiative
heat loss, suggested by Sohrab et al. [3], and successfully utilized by Chao et al. [4],

qrad ≈ Br exp

(
− Er

RTg

)
χ(T − T∞), (4)

rather than the well-known Stefan-Boltzman law [11, Chapter 1]. Here Br plays the role of
a constant pre-exponential factor and has dimension (J/m3s) and Er is a parameter similar
to a conventional activation energy E (J/kmol). This form for qrad was based on noting the
high sensitivity of the T 4-law to temperature variations and expanding the radiation heat loss
in an appropriate power series about a reference temperature (in references [3] and [4] the
flame temperature). More generally, the form of Equation (4) can be derived directly from
the standard expression for black-body radiation by taking some average value for the wave
number of the gaseous species involved. In any event, the coefficients Br and Er are chosen
in such a way as to minimize the difference between Equation (4) and the Stefan-Boltzman
law within a given limited temperature interval. Both in references [3] and [4] and the cur-
rent work the over-riding consideration for adopting Equation (4) for the radiative heat loss
is mathematical tractability. The appearance of the Heaviside function, χ , in Equation (4)
ensures that the radiation is cut off when the temperature of the emitting medium reaches the
ambient temperature (Tg = T∞).

Initial conditions for the system of equations are:

Tg = Tg0;Cf = Cf 0. (5)

The pair of Equations (1) and (2), subject to the initial conditions (5), will be used to analyze
the phenomenon of thermal explosion in a combustible gas mixture with heat losses due to
thermal radiation from the burned gas.

3. Classification of dynamical behaviour

To classify compactly all possible dynamical scenarios of the solutions of Equations (1) and
(2) we begin by recasting the system in non-dimensional form. We define the following
dimensionless variables

τ = t

treact
, treact = Z−1 exp(E/RTg0), η = Cf

Cf 0
, θ = E

RTg0
· Tg − Tg0

Tg0
. (6)

Then, substituting from Equation (6) in Equations (1) and (2), we obtain

γ
dθ

dτ
= η exp

(
θ

1 + βθ
)

− κ1(1 + βθ) exp

(
θ

1 + βθ
)

exp

(
κ2

1 + βθ
)
χ(θ − θ∞), (7)
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= −η 1

1 + βθ exp

(
θ

1 + βθ
)
, (8)
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where the following parameters appear:

β = RTg0

E
, βr = RTg0

Er
, γ = cpgTg0ρg0

Cf 0Qfµf
β, κ1 = Br

Cf 0µfQfZ
, κ2 = βr − β

ββr
. (9)

The initial conditions for the dimensionless Equations (7) and (8) are: θ = 0; η = 1.
It is readily observed that the dynamical behavior of the system depends on five dimen-

sionless parameters: β � 1, γ � 1, βr, κ1, κ2. Parameters β and γ are the conventional
parameters of Semenov’s theory of thermal explosion [12] and their physical meanings are
well known; β is the reduced initial temperature (with respect to the so called activation tem-
perature E/R) and γ represents the reciprocal of the final dimensionless adiabatic temperature
of the thermally insulated system after the explosion is completed. Characteristic values of
these parameters (β and γ ) are small compared with unity for most gaseous mixtures due to
the high exothermicity of the chemical reaction and the large activation energy. Analogously,
we understand βr as some kind of initial temperature, reduced with respect to the radiative
activation energy Er . The parameters κ1 and κ2 are new. To elucidate the physical meaning of
κ2 we re-write it in the form

κ2 = βr − β
ββr

= 1

β
− 1

βr
= (E − Er)

RTg0
. (10)

The value κ2 = 0 distinguishes between two different cases: activation energy E less than
radiation energy Er (corresponding to κ2 < 0), and activation energy E greater than radiation
activation energy Er (corresponding to κ2 > 0).

The qualitative analysis of the behavior of possible solutions of Equations (7) and (8),
using conventional phase-space analysis, is rendered extremely difficult due to the nature of
the right-hand sides of the equations, and approximate numerical procedures must be resorted
to. Alternatively, the presence of the small parameter γ on the LHS of Equation (7), such
that Equations (7–8) form a singularly perturbed system, raises the possibility of using some
sort of asymptotic treatment for developing solutions. In this work, we exploit a powerful
technique, the so-called geometrical version of the integral manifolds method (MIM), through
which the multiple-scale system under consideration is decomposed into separate studies of
its component fast and slow subsystems. The advantage of this decomposition is that the sub-
systems have lower dimensions than the original problem. Their analysis permits a compact,
clear geometrical/analytical rendition and interpretation of all possible dynamical scenarios
associated with the governing equations, in terms of the physico-chemical parameters of the
system. Although numerical solution of the Equations (7) and (8) is straightforward, general
analytical parametric demarcation of the system’s dynamical behaviour, such as will be pre-
sented here, is unattainable by numerical means. The reader unfamiliar with this method may
refer to references [9] and [13–16] for a description of the pertinent mathematical ideas.

3.1. SHAPE AND POSITION OF THE SLOW CURVE

We have already mentioned that γ is a small parameter (due to the high exothermicity of
the chemical reaction). Equation (7) describes a fast heat release process (i.e., in general, the
temperature θ changes rapidly relative to the concentration η), whereas Equation (8) describes
the relatively slow process of concentration decay. The different rates of change of these
variables suggest the geometrical version of the integral manifold method (MIM) [9, 13–
15] as a suitable candidate for analyzing the equations.
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We consider solutions of Equations (7) and (8) via trajectories in the θ−η plane. According
to the integral manifold method [9] an arbitrary trajectory can be subdivided into fast and
slow parts. The fast part is characterized by a constant value of the slow variable η. The
slow part is quasi-stationary for the fast variable θ and is located on the integral manifold
(a curve in the two-dimensional case). However, an alternative, more tractable approach is
to examine the zeroth approximation (γ = 0) of the manifold. In the current problem every
trajectory begins at the initial point (θ = 0, η = 1). As long as the γ -neighborhood of the
slow curve does not contain the initial point, a trajectory begins with the so-called fast motion
and moves parallel to the θ-axis (in the zeroth approximation). Physically, the direction of
this motion depends on the relation between heat release and heat loss terms in the RHS of
Equation (7). Geometrically, its direction depends on the relative location of the slow curve to
the initial point. A trajectory may reach the slow curve or pass above or below it. If a trajectory
reaches a stable branch of the slow curve, its subsequent behavior essentially depends on the
dynamics on this branch, which is determined by the existence of a delicate balance between
heat production and radiative heat losses. Thus, the shape and location of the slow curve, and
the location of the initial point relative to it define the detailed, dynamical picture.

The slow curve for Equations (7–8) is obtained by setting the RHS of Equation (7) for the
fast variable (temperature) equal to zero, thus yielding

 (θ, η) = η − κ1(1 + βθ) exp

(
κ2

1 + βθ
)
χ(θ − θ∞) = 0. (11)

The shape and position of the slow curve in the θ − η plane depend on the combination of
the values of the three parameters κ1, κ2, β. Elementary analysis shows that the slow curve
is an explicit, analytic single-valued function η(θ) in the θ − η plane, and any combination
of parameters dictates its location relative to the initial point θ = 0; η = 1. Now, κ2 = 0
represents a bifurcation point for the slow curve (11). At this point of parametric space the
characteristic shape of the slow curve changes sharply. For positive κ2 the curve (11) has two
branches with a vertical asymptote. For κ2 = 0 it is simply the straight line η = κ1(1 + βθ).
For negative values of κ2 it is monotonic. For further convenience we distinguish here between
positive and negative values of κ2 and analyze the slow curves in each instance.

3.1.1. κ2 > 0
This case corresponds to the case when the activation energy of the fuel E exceeds the radia-
tion activation energy Er (see Equation (10)). We first determine the number and coordinates
of turning points on the slow curve. The turning points T are points where the slow curve has
a horizontal tangent, so that determination of their coordinates involves the solution of the
following set of equations  (θ, η) = 0; ∂η(θ)/∂θ = 0. The turning points divide the slow
curve into stable and unstable parts. The stable parts attract trajectories, whereas the unstable
ones repel them. Upon approaching a stable part, a trajectory begins to move along the slow
curve within its γ -neighborhood (this part of the trajectory belongs to the integral manifold,
which is located at a distance of O(γ ) from the slow curve). Approaching the slow curve
means that two counter-directed processes (heat release due to chemical reaction and radiative
heat losses) attain a fine balance. This balance is conserved during the trajectory movement
along the attractive (stable) part of the slow curve. In essence, the trajectory adheres to the
stable part of the slow curve. The movement along this part continues until the trajectory
reaches the turning point (distinguishing stable and unstable parts) or the stationary point of
the system.
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Figure 1. Two possible scenarios of thermal explosion described by Equations (7–8) when the slow curve PTQ
has a single turning point and the initial point lies above the slow curve (κ2 > 0, κ1 exp(κ2) < 1). Figures 1a and
1b depict the trajectories with and without a fast cooling stage (TC on the Figure 1a), respectively.

Differentiating the function η(θ) and equating the result to zero, we reach the conclusion
that the slow curve  (θ, η) has a single turning point T with θ-coordinate

θT = 1

β
(κ2 − 1), (12)

if θT > θ∞, or has no turning points at all if θT ≤ θ∞. It is also readily seen that the slow
curve  (θ, η) has a vertical asymptote at the point θ = −1/β, whence we conclude that the
graph of the slow curve decreases when θ < θ1 (see Figure 1, section PT) and increases when
θ passes beyond this point (θ > θT , section TQ, Figure 1).

The presence of the ambient temperature T∞ may be graphically illustrated by a barrier,
placed at the point θ = θ∞, which is impenetrable by the system’s trajectories. This is because
the behavior of the physical system is governed by two essentially different systems of ODEs
in two parts of the plane θ − η separated by the straight line θ = θ∞. To the left of this
line conventional thermal explosion of an adiabatic system without any heat sink occurs. The
Heaviside function vanishes on the RHS of Equation (7) and the temperature of the system
can only increase. To the right of the line θ = θ∞ radiative heat losses must be accounted
for. The Heaviside function in the RHS of Equation (7) equals unity here and the direction
of the trajectory depends on the location of the initial point relative to the slow curve. When
it lies below the slow curve, the temperature decreases and the trajectory moves towards the
line θ = θ∞. It turns out that the part of the straight line θ = θ∞ lying below an intersection
with the slow curve is attractive and represents an invariant manifold of a new type, which we
dub a barrier manifold. This new manifold is absolutely attractive. The arrows in Figure 1 and
on the following figures indicate the direction of the vector field near every part of the slow
curve.

3.1.2. κ2 < 0
The slow curve  (θ, η) has a simpler form than in the previous case. The function η(θ)
representing the slow curve has no turning points at all and intersects the θ-axis at the single
point θ = −1/β (the curve PQ, Figure 3). It is not hard to show that, within the given
parametric region, the graph of  (θ, η) only increases (∂η(θ)/∂θ > 0)) for all meaningful
(positive) values of the dimensionless concentration η and has no asymptotes.



Analysis of radiative heat-loss effects 235

Table 1. Classification of dynamical regimes when κ2 > 0

κ1 exp(κ2 < 1, Initial point above the slow curve

(I) Figure 1a (II) Figure 1b

(i)Fast part AB: temperature increases to a (i) Fast part EF: temperature

maximum value as exothermic chemistry dominates increases to a maximum value as

radiative cooling; conventional explosive regime. exothermic chemistry dominates

radiative cooling ; conventional

explosive regime

(ii) Slow curve motion BT: till turning point T (ii) Slow curve motion FG:

(θ∞ < θT ) is reached; balance between heat release (θT < θ∞) till θ = θ∞; balance

and heat losses; delay effect. between heat release and heat

losses; delay effect.

(iii) Second fast part TC: temperature decreases

sharply to θ∞; radiative heat losses dominate. (iii) No second fast part.

(iv) Final stage CD: concentration decreases to zero (iv) Final stage GH: concentration

at θ = θ∞ along attractive barrier manifold. decreases to zero at θ = θ∞ along

attractive barrier manifold.

3.2. CLASSIFICATION OF POSSIBLE REGIMES

Some general remarks are in place before embarking on a detailed classification of the var-
ious dynamical regimes. The negative sign of the RHS of Equation (8) indicates that the
concentration of the fuel component along an arbitrary trajectory can only decrease. A similar
analysis of the RHS of Equation (7) allows us to conclude that the dimensionless temperature
of the gas mixture increases (∂θ/∂τ > 0) and the trajectory moves in the direction of higher
temperatures at some point θ0 when the corresponding point of the trajectory lies above the
slow curve ( (θ0, η0) > 0). Conversely, the gas temperature drops (∂θ/∂τ < 0) and the
trajectory moves in the direction of the ambient temperature θ∞ at point θ0, when the point of
the trajectory with coordinate θ0 lies below the slow curve ( (θ0, η0) < 0.

Additionally, by substituting the coordinates of the initial point (θ = 0, η = 1) in the ex-
pression for the slow curve (11), we can deduce whether the initial point lies above ( (0, 1) >
0) or below ( (0, 1) < 0) the slow curve.

We now elaborate on the possible dynamical regimes that are determined by the slow
curves previously described. In the ensuing discussion the reader is advised to read the relevant
tables and figures together.

3.2.1. κ2 > 0
Recall that the slow curve in this case has a single turning point T (absolute minimum of the
slow curve PTQ, Figure 1) or no turning points at all. With respect to the location of the initial
point relative to the slow curve we can subdivide the parametric region under consideration
into two sub-regions, corresponding to the position of the initial point being above/below the
slow curve (κ1 exp(κ2) < 1 and κ1 exp(κ2) > 1, respectively).
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Table 2. Classification of dynamical regimes when κ2 > 0

κ1 exp(κ2) > 1, Initial point below the slow curve

(I) Figure 2a (II) Figure 2b (III) Figure 2c

(i) Fast part AB: (i) Fast part DE: turning (i) Fast part HJ: turning

turning point is above point is below initial point; point is below initial point;

initial point; temperature decreases as temperature decreases as

temperature decreases radiative heat losses radiative heat losses

directly to as dominate. dominate.

radiative heat losses

dominate.

(ii) Slow curve motion (ii) Slow curve motion JI:

ET: till turning point T (θT < θ∞) till θ = θ∞;

(ii) No slow curve (θT < θ∞) is reached; balance between heat

motion and delay balance between heat release and heat losses;

effect. release and heat losses: delay effect.

delay effect.

(iii) Second fast part TF:

(iii) No second fast temperature decreases (iii) No second fast part;

part. sharply to θ∞; radiative

heat losses dominate.

(iv) Final stage BC: (iv) Final stage FG: (iv) Final stage IK:

concentration decreases concentration decreases to concentration decreases to

to zero at θ = θ∞ along zero at θ = θ∞ along zero at θ = θ∞ along

attractive barrier attractive barrier manifold attractive barrier manifold

manifold

(a) κ1 exp(κ2) < 1. We consider a trajectory beginning at an initial point above the slow
curve. Two trajectories are illustrated in Figures 1a and 1b, respectively, and their component
parts with their appropriate physical meaning are succinctly summarized in Table 1. In both
cases it is observed that the initial part of the trajectory corresponds to conventional explosive
behavior with the exothermic chemistry dominating the heat transfer, followed by a delay
effect in which the radiative heat losses balance the heat gain.
(b)κ1 exp(κ2) > 1. Assume, now, that the initial point lies below the slow curve. The three
possible trajectories under these circumstances are sketched in Figures 2a, 2b and 2c and are
described in Table 2. In all cases the radiative heat loss is dominant from the initial moment,
the heat release due to chemical reaction is rather small, the system cools and the gas tem-
perature falls sharply. The subsequent scenarios may (Figures 2b, 2c) or may not (Figure 2a)
involve a delay effect. The simplest of the possible slow scenarios is realized when the turning
point T lies above the line η = 1 (Figure 2a). It is not hard to show that, if the η-coordinate of
the turning point T is less than unity (ηT < 1), the fast part of the trajectory reaches the stable
branch of the slow curve leading to the delay effect.
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Figure 2. Three possible scenarios of thermal explosion described by Equations (7–8) when the slow curve PTQ
has a single turning point and the initial point lies below the slow curve (κ2 > 0, κ1 exp(κ2) > 1).

3.2.2. κ2 < 0
In this case the slow curve  (θ, η) has no turning points (no local maximum exists, Figures 3
and 4). Once again the location of the initial point relative to the slow curve divides the para-
metric region under consideration into two sub-regions according to whether κ1 exp(κ2) < 1
or κ1 exp(κ2) > 1.
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Table 3. Classification of dynamical regimes when κ2 < 0.

κ1 exp(κ2) < 1 κ1 exp(κ2) > 1

Initial point above the slow curve Initial point below the slow curve

(I) Figure 3 (II) Figure 4a (III) Figure 4b

(i) Fast part AB: temperature (i) Fast part AB: temperature (i) Fast part DE: temperature

increases to a maximum value decreases directly to θ = θ∞; decreases as radiative heat

as exothermic chemistry radiative heat losses dominate. losses dominate.

dominates radiative cooling;

conventional explosive regime.

(ii) Slow curve motion BC: (ii) Slow curve motion EF:

till θ = θ∞; balance between (ii) No slow curve motion and till θ = θ∞; balance between

heat release and heat losses; delay effect. heat release and heat losses;

delay effect. delay effect.

(iii) Final stage CD: (iii) Final stage CD: (iii) Final stage FG:

concentration decreases to concentration decreases to zero concentration decreases to

zero at θ = θ∞ along at θ = θ∞ along attractive barrier zero at θ = θ∞ along

attractive barrier manifold. manifold. attractive barrier manifold.

Figure 3. Possible scenario of thermal explosion described by Equations (7–8) when the slow curve PQ has no
turning points and the initial point lies above the slow curve (κ2 < 0, κ1 exp(κ2) < 1).

(a) κ1 exp(κ2) < 1 The single possible trajectory is shown in Figure 3 and described in Table 3.
Its component parts are qualitatively similar to the scenario in Figure 1b. Initially explosive
behavior occurs, followed by a delay effect and then a sharp drop in the concentration to zero.
(b) κ1 exp(κ2) > 1. The two possible trajectories are illustrated in Figures 4a and 4b and
described in Table 3. As in the parallel case of κ2 > 0 sharp cooling of the system occurs
from the outset due to radiative heat losses. Subsequently, there occurs either a delay effect
(Figure 4b) to or a direct drop (Figure 4a) of the temperature to the ambient value θ = θ∞, at
which the final stage of the process is triggered.
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Figure 4. Two possible scenarios of thermal explosion described by Equations (7–8) when the slow curve PQ has
no turning points and the initial point lies below the slow curve (κ2 < 0, κ1 exp(κ2) < 1).

4. Characteristics of thermal exlosion

In the previous section we demonstrated that the dynamical picture of thermal explosion
in a gaseous mixture in which there is thermal radiative loss is much richer than that with
conventional heat losses obeying Fourier’s law, for which the heat flux is linearly proportional
to a temperature difference (see, for example, [17]). In particular, the conventional criterion
for thermal explosion defined by a critical value of the heat-loss coefficient is transformed in
the current context into a curve in the parameter plane. In addition, the maximum temperature
of the gas mixture during explosion with radiant heat loss is smaller than that obtained in the
case with conductive heat losses.

4.1. THERMAL EXPLOSION CRITERION

The aforedescribed analysis allows the establishment of conditions that distinguish explosive
regimes from slow ones, and thereby to determine a criterion for explosion. We have already
found that explosive behavior of the mixture temperature occurs when κ1 exp(κ2) < 1. The
appearance of two dimensionless parameters in this inequality is linked to the two independent
parameters, the pre-exponential factor Br and the radiative activation energy Er that appear in
the definition of the radiative heat loss term, see Equation (4). These two parameters dictate
the intensity of the radiative heat flux from the burned gas to the ambient. Figure 5 depicts a
curve representing the criterion for thermal explosion in the κ1 − κ2 parameter plane.
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Figure 5. Regime map (safe - unsafe) in the κ2 − κ1 parameter plane.

4.2. MAXIMUM EXPLOSIVE TEMPERATURE

It is of great interest to derive an approximate expression for the maximum temperature of
the burning system that can be attained in the process of thermal explosion. To get a rough
estimate of the magnitude of this parameter, we explore the quasi-stationary approximation
for the slow variable η. Substituting the initial value of the dimensionless concentration η in
Equation (11) for the slow curve we obtain the following equation from which the maximum
temperature can be assessed

1 − κ1(1 + βθ(0)max) exp

(
κ2

1 + βθ(0)max

)
= 0 (13)

This transcendental equation cannot be solved analytically. However, if the conventional Frank-
Kamenetskii approximation [10, Chapter 2], βθ(0)max � 1, is applicable, an approximate expres-
sion for the maximum temperature θ(0)max is derived in the form

θ(0)max ≈ 1 − κ1 exp(κ2)

βκ1(1 − κ2) exp(κ2)
(14)

4.3. RESULTS

It is of interest to estimate the effect of thermal radiation losses for some specific cases.
We make use of the data of Chao et al. [4]. They assumed that Planck’s mean absorption
coefficient κ is the molar average value of the mixture in the radiation region. In our case, due
to the assumption that the fuel is the deficient reactant, the gaseous mixture can be considered
as consisting of CO2,H2O andN2. Furthermore, sinceN2 is very non-radiative in comparison
to CO2 and H2O, we can restrict ourselves by taking into account the two latter components
only. Therefore, the Planck’s mean absorption coefficient κ reads

κ = xCO2κCO2 + xH2OκH2O, (15)

where xi is the molar fraction of the i-th mixture component. For the stoichiometric burning
of heptane in air, Chao et al. calculated a value of κ = 0·8 m−1 on the basis of CO2 and H2O
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Table 4. Thermophysical data for n-decane, n-heptane and tetralin

Property n-decane n-heptane tetralin

Heat capacity c, J/kg/K 1050 1050 1256

Latent heat L, J/kg 3·21 × 105 3·2 × 105 3·17 × 105

Initial temperature, K 1100 1100 1100

Molar mass µf , kg/kmol 142 100 132

Combustion energy Q, J/kg 4·42 × 107 4·54 × 107 1·266 × 107

Activation energy E, J/kmol 1·257 × 108 1·257 × 108 2 × 108

Thermal conductivity λ, 0·0193 0·0193 0·084

W/m/K

Preexponential factor A, 1/s 0·95 × 107 0·95 × 107 1·15 × 108

absorption coefficients evaluated at 1 atm and 2,000 K. By performing a best fit of the fourth-
power law by an exponential function they extracted a value of 8,000 K for the so-called
equivalent radiation temperature Er/R (this approximation is valid within a restricted range
of gas temperatures 1,600 K ≤ Tg ≤ 2500 K) which corresponds to a radiation activation
energy Er = 66·5 MJ/kmol. For the radiation pre-exponentional factor they obtained the
value Br = 16 kW/m3.

Using these values of the radiation parameters, we find that the absolute value of κ1 is
rather small, of the order of 10−10. For the second dimensionless parameter κ2, characterizing
the relation between radiative and conventional activation energies, we obtain a value of 17·5.
In terms of the detailed classification of regimes we have analysed these values correspond to
case (I) shown in Figure 1a. The small value of parameter κ1 implies a location about the right
branch of the slow curve TQ, very close to the temperature axis, so that, correspondingly,
the intersection point between the trajectory and the slow curve lies very close to the θ-axis.
Therefore, under this particular set of conditions, at the point B (Figure 1a) the gaseous fuel is
almost completely consumed before the radiative losses play a noticeable role in the system’s
dynamics. Under these circumstances a measure of the deviation of the maximum temperature
brought on by the radiative heat losses can be assessed using (θad. − θ(0)max)/θad., where θad =
γ −1 is the adiabatic temperature of the system in the absence of any thermal losses. It is
readily seen that this expression is a function of the dimensionless parameter κ1 and extremely
sensitive to the value of κ2.

Analysis of the definitions of the parameters κ1, κ2 shows that the influence of the thermal
radiation changes strongly with the physico-chemical properties of the fuel and depends on the
radiative properties of the original gaseous mixture. Detailed numerical simulations confirmed
this conclusion. For example, for the stoichiometric combustion of n-decane in air the relative
influence of the radiation phenomenon is 0·015%, whereas for combustion in an atmosphere
of CO2 (i.e. more radiative CO2 is substituted for non-radiative hydrogen in the air) this
value is equal to 0·09%. The initial temperature of the mixture was taken to be 1100 K; other
parameters used for the calculations are presented in Table 4. A qualitatively different picture
is obtained for the thermal explosion of tetralin (a fuel with a larger activation energy and
smaller combustion energy than that of normal hydrocarbons), for combustion of which the
radiative losses cannot be ignored from the very beginning of the process. For the stoichio-
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Figure 6. Time histories of the dimensionless temperature (upper) and concentration (lower). Solid line represents
result of calculation of the full system (7–8), dotted line depicts results of calculation of the adiabatic version of
the system (7–8) (without radiative losses on RHS of Equation (7)).

metric combustion of tetralin in air the relative influence of the radiation phenomenon is 4·3%,
whereas for combustion in an atmosphere of CO2 this value tends to a third (28%). In Figure 6
the evolution with time of the temperature and the concentration of tetralin are illustrated, with
and without radiative heat losses (the continuous and broken lines, respectively). From early
in the system’s development radiation plays a major role in the departure of the temperature
from the adiabatic profile. In contrast, for n-decane and n-heptane (curves not shown here)
this divergence was barely distinguishable.

5. Conclusions

A novel modification of Semenov’s classical problem of thermal explosion of a gaseous
mixture in the presence of radiative heat transfer from the burning gas to the ambient is
considered and analysed. The model takes into account heat release due to the exothermic
oxidation of gaseous fuel, gaseous fuel consumption as a result of a chemical reaction, and
radiative heat losses. The mathematical formulation involves a singularly perturbed system of
two nonlinear ordinary differential equations. A geometrical version of the integral manifold
method is used for the qualitative analysis of the dynamics of this system. The dynamic be-
havior of the system is completely classified according to the values of five key dimensionless
parameters: β, γ, κ1, κ2, βr under the additional assumption that the first two are small with
respect to unity. Two main types of dynamic behavior are found for the system: conventional
fast explosive regimes (slow cooling after fast temperature growth) and fast cooling (cooling is
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split into a relatively fast first stage followed by a period of relatively slow cooling). Possible
variations of these two types of system dynamics are analysed. An analytical estimate for the
maximum explosive temperature is derived and the relative importance of the radiative heat
losses is discussed. The dependence on the physical parameters of the system of the delay time
until radiative effects become appreciable is investigated. The analytical study and numerical
examples for three fuels, n-decane, n-heptane and tetralin, indicate the critical role of the
fuel type and the ambient conditions in determining the influence of thermal radiation on
the maximum explosive temperature. It is shown that in the case of normal hydrocarbons the
effects of thermal radiation can be largely ignored at the fast (explosive) stage of the thermal
explosion, whereas for tetralin these effects are significant even at this stage.
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